
2. Physical sound

2.1 What is sound?

Sound is the human ear’s perceived effect of pressure changes in the
ambient air. Sound can be modeled as a function of time.

Figure 2.1: A 0.56-second audio clip of an accordion playing C4 (middle C, 261.6 Hz).

When we hear music, we can evaluate its features almost imme-
diately. We can recognize the instrumentation, modality, artist, genre,
and perhaps the time and place it was recorded. Graphically, it is
difficult to connect this image to what we actually hear: The above
graph looks complicated, while the experience of this sound (the audio
signal) is a single, sustained pitch on an accordion. But when we take
a Fourier transform of this clip, we can actually view the frequencies
present in a song.

Because pitch and timbre are made up exclusively of the change
over time of frequencies and amplitudes, and they tell us so much
information about musical features, the Fourier transform is an incred-
ibly useful tool that translate time domain signals like music onto an
axis of frequencies, i.e., a frequency domain. The graph in Figure 2.2 lets
our eyes verify what our ears already know: The graph describes the
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Figure 2.2: The spectrum and listed frequencies attained by the discrete Fourier
transform of the clip shown in Figure 2.1. Note the locations of the peaks with respect
to frequency.

relative strength of the frequencies present in a signal. In this example,
we see the frequency characteristics of an accordion playing C.

The frequencies themselves are not as important as the general
shape of the spikes and the distance between them; most cannot dis-
tinguish between A and C in isolation, but we do have a relatively
easy time identifying the difference between a piano and a violin. This
is because of the texture of the instrument’s sound, called the timbre
or tone color. When the frequencies are more or less equally spaced
from one another, we say that the timbre is harmonic, or that we have a
harmonic overtone series. Explicitly, the Fourier transform of the signal
in Figure 2.1 and its graphical representation in Figure 2.2 tell us the
signal contains the frequencies 263.2 Hz (C), 528.2 Hz (C), 787.9 Hz (G),
1051 Hz (C), and 1313 Hz (E). The frequencies’ respective peak in the
graph indicates their loudness; hence, they are decreasing in power.
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Middle C is 261.6 Hz, so apparently this accordion is slightly out
of tune—but furthermore, its timbre is not perfectly harmonic: the
difference between its overtones should be 263.2, but 528.2� 263.2 =

265, and 787.9 � 528.2 = 259.7. There are several possible reasons
for why these spikes are not exactly equally spaced. Most likely, it
is due to the imperfect physical proportion and construction of the
instrument’s metal reeds, but it could also be error encountered in the
recording process or experimental error.

To interpret how exactly this translates to what our ears hear, we
must take into account how certain frequencies are perceived by the
brain. Young, healthy human ears can detect frequencies within a
range of 20-20,000 Hz, where 20 Hz and 20,000 Hz are threshold and
limit values, but our ears are not uniformly sensitive to these frequen-
cies [1]. Within the range of 1000 to 5000 Hz, our ears are especially
sensitive, meaning that sounds with frequencies within this range do
not have to be as loud for our ears to detect them.

Mathematically, the Fourier transform constructs an orthonormal
basis that takes a complicated sound wave and reduces it to its compo-
nent waves, which are all simple sine and cosine waves, or sinusoids.1

It shows us every frequency and its amplitude that is present in a
complex sound over an interval of time. The connection between the
graph of the transform and its mathematical properties is a giant step
towards realizing the Fourier transform and its digital applications.
Because sight and sound retrieve giant spheres of information, we
have to make decisions about what is important and what we can
take for granted. Our brains are so excellent at processing information
that we can give certain sensations finer resolution (like an important

1"Orthonormal" means orthogonal and normal. For a function to be orthogonal
to another function, the two functions must be linearly independent. The condition of
normality is satisfied when each function involved has, in some appropriate sense,
energy 1. Finally, a basis is a set of functions such that an arbitrary function (within
reason) may be written in terms of the basis. See Chapter 7.
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Figure 2.3: We detect frequencies between about 20 and 20,000 Hz as pitched sound.
Furthermore, each of these frequencies has a minimum threshold of loudness. This
graph, the Fletcher–Munson curve, shows the minimal sound pressure level in deci-
bels (dB) required for the frequency to be heard.

message from our friend), and others none at all (like the hum of the
refrigerator).

Consider seeing a relatively involved movie for the second or third
time, and noticing things you didn’t notice before that now make
sense. We seem to prefer movies like these. We may achieve a decent
understanding of the plot on the first viewing because we extract
salient parts of the dialogue and action and put them in order, but a
complex plot can hide clues of outcomes and their rationale all over
the film that are more obvious when our brains can support them with
familiar elements.

A complex piece of music can be a lot like a complex movie. We
perceive both sound and light as signals. When a signal demands
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our attention, it is said to have a high amount of information. A signal
with meaningless content that we don’t need or want to listen to is
called noise. ound produced by white noise machines, e.g., is random,
unpitched, and trivial. It does not contain a message because it is
formally disorganized, and it can even help some people sleep because
of its uniform randomness. Noise is composed of so many periodic
waves that we consider it aperiodic. We cannot extract individual
frequencies of noise, as we can in melody or a major chord in music.
A signal can be half meaningful and half noise, and our brains are
powerful enough to recognize the difference and attempt to separate
the two.

Although sine waves are not fun to think about, they substantiate
much of the mathematics and physics behind music. The mathematical
and physical equations which produced the previous graphs form a
basis for the sensation of sound. Many musical concepts are results of
mathematical relationships. First, let us examine the basic mathemati-
cal structure of sound. Musical form will be addressed in Chapters 3
and 4.

2.2 Simple harmonic motion

Like light, sound is traveling energy, and we can model such energy
mathematically with waves. The simplest wave is a sinusoid, a trigono-
metric function such as sin(↵t) or cos(↵t) where t denotes time and
↵ specifies how often it repeats itself—its angular frequency.2 A sinu-
soidal wave represents the simple harmonic motion of an object because
its frequency and extreme magnitudes do not change over time.

Both a spring and a tuning fork exhibit simple harmonic motion.
Below, we see two states of a vibrating tuning fork called modes of
vibration. Both of these modes produce sound that is near in tone to a
sine wave (or pure tone), but as you might have experienced, the tone

2The frequency f in Hz. (cycles per second) is related by � = 2⌅f .
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Figure 2.4: A tuning fork and a weighted spring oscillate in simple harmonic motion.

is more metallic and glassy than the electronic sound of a sine wave.
When we strike the tuning fork, we experience the attack of the sound
and then the sound sustains (decaying due to frictional forces with
time) and eventually releases, leaving no sound. In the ideal physical
world, i.e., one without the external forces of gravity, friction, and
other resistive forces, a spring set into motion could oscillate forever
at a uniform amplitude, as could a tuning fork. But that is not what
happens in reality. The closest we can get to simple harmonic motion
is represented by the curve in Figure 2.5.

Figure 2.5: A musical wave in reality begins at zero energy, climbs to a maximal
energy, and fades to zero energy.
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You can see that the amplitude of this wave varies, but the points
at which it crosses the horizontal axis, i.e., when its amplitude equals 0,
are evenly spaced over time. This means the frequency does not vary,
but the intensity of its motion does. True simple harmonic motion
can be generated by an oscillator, a computer, or a tuning fork with a
driving motor attached to it [2].

Amplitude represents pressure as well as voltage: An audio func-
tion models the pressure in the air corresponding to the sound wave
as a function of time, and when the signal is electrified, the amplitude
represents the (relative) voltage. In acoustics as well as electrical en-
gineering, we call this function a signal, and the amplitude tells us
most of the information we need to determine how loud our ears will
perceive it to be. Because air is elastic, when a sound wave travels in
air, it excites the air molecules and varies the pressure. The amplitude
of the graph of a sine wave describes this behavior (see Figure 2.6).

There are three fundamental aspects of a sinusoid of the form
A sin(↵t+ ⌦): Its magnitude3 A, frequency ↵, and phase ⌦. We have
already considered amplitude: It is the pressure. A wave at amplitude
0 means that the system is at normal atmospheric pressure—the pres-
sure of the environment to which our ears have adjusted and no extra
pressure is affecting the eardrum at that instant. Frequency can be
determined by the number of times per second that the signal has zero
pressure, or the rate at which the signal crosses the graph’s horizontal
axis. Finally, we can determine the phase ⌦ at any point t from the
time of the next zero crossing, i.e., where the amplitude crosses the
horizontal axis.

3Unfortunately, there are quite a few terms that will be used somewhat inter-
changeably to mean magnitude: Amplitude, height, displacement, energy, power,
voltage, pressure, strength, and loudness. Loudness is a perceptual word and since
we do not perceive all frequencies as equal (or at all, as in Figure 2.3), this word will be
used with caution. Voltage, power, and energy are typically encountered in electrical
engineering texts to mean amplitude, though they absolutely do not have equivalent
meaning (see Appendix A). Strength and displacement are words used here to denote
the magnitude of a wave, i.e., the vertical distance from 0.
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Figure 2.6: The compressions and rarefactions in air resulting from sound waves,
shown two ways. The maximal points of the sine wave graph correspond to the most
compressed areas of the particle graph, represented by the most densely spaced dots.
The minimal points correspond to rarefactions, represented by the least dense spacings
of dots. Where the amplitude of the sine wave is 0 represents normal atmospheric
pressure, where the density of the dots is average.

For ease of computation, we only allow amplitude to vary between
-1 and 1, so the average value of the amplitude of a simple sine wave is
always zero.4 It may seem strange that pressure can take on negative
values, but it simply means that the sound’s pressure is dipping below
normal atmospheric pressure. For purposes of standardization, this
is defined as the pressure of air at sea level, 101,325 pascals (Pa); but
in reality, this is the average atmospheric pressure of our present
environment to which our ears have adjusted. Hence, amplitudes
higher than 0 imply that the pressure induced by a sound wave is

4In electronic reality, sound signals can, however, have nonzero average value
due to things like DC offset, uncalibrated equipment, or postproduction changes.
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greater than normal pressure (compression), and amplitudes below 0
imply that the pressure of a sound wave is less than normal pressure
(rarefaction). Our ears detect sound by change over time in pressure, so
a single, isolated amplitude tells us nothing about what we actually
hear.

Angular frequency is given by ↵ in radians per second (rad/s), and
it is equal to 2⌥f , where f is ordinary frequency, given in hertz (Hz).
Frequency f is inversely proportional to the time that the sine wave
takes to complete one period T , as given by the following formula.

f =
1

T

Therefore, ↵ = 2⌅
T .

Phase tells us where the wave is along the course of a single period,
taking on angles between 0⌅ and just less than 360⌅. We are especially
interested in phase when we have two waves of identical frequency.

Now let us examine the nature of a simple sinusoid where ↵ = 2⌥

radians/second (so f = 1 Hz), x(t) = sin(2⌥t).

Figure 2.7: A simple sinusoid, x(t) = sin(2⌅t), with the phase ⌥ marked.

Take note of the circular diagrams beneath the graph in Figure 2.7.
These circles show different positions along the unit circle. The starting
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position where ⌦ = 0 is the rightmost point on this circle, situated at its
intersection with the horizontal axis. When we move counterclockwise
along the circumference of this circle, we increase the angle relative to
this position. When we return to this position, we have moved 360⌅.
In radians, 360⌅ is equal to 2⌥. We can translate any angle in degrees
to radians by multiplying the number of degrees by ⌅

180 , e.g., for a
right angle ⌦ = 90⌅, the equivalent angle in radians is calculated to be
90⌅ · ⌅

180 = ⌅
2 radians.

Note that ⌦ = 0 is positioned on the circle exactly where ⌦ = 2⌥ and
⌦ = 4⌥. This is true of any even-integer multiple of ⌥ (4⌥, 6⌥, 8⌥, . . .).
Similarly, the trigonometric function of any variable (such as a fre-
quency ↵) is the same as that variable phase shifted by an integer-
multiple of 2⌥, i.e.,

cos(↵) = cos(↵ + 2k⌥), and

sin(↵) = sin(↵ + 2⌥k), k = 0, 1, 2, . . .

Again, the height of points along the unit circle at angle ⌦ is given
by sin(⌦), and the width is modeled by cos(⌦). The phase at the initial
time, t = 0, is the angle that the sinusoid is shifted relative to a sine
wave with no phase. We represent phase with the Greek letter ⌦, so
that a simple sinusoid is formally written

x(t) = A sin(2⌥ft+ ⌦) = A sin(↵t+ ⌦).

We multiply frequency by the quantity 2⌥ because this strengthens
the connection between the unit circle and frequency. The angular
frequency is commonly used in the Fourier transform and physical
science. However, in music, we connect pitch to frequency in hertz
(like A440), so we will use 2⌥f instead of ↵ when considering sound
musically.

It is impossible to identify the phase of a single sine wave without
a reference point. However, it is important for a signal to begin and
end at amplitude 0 in order to understand its behavior, because sounds
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beginning or ending at a nonzero amplitude surprise our ears to the
point that the frequency undergoes distortion. Consider dropping a
needle on the record and hearing a fuzzy click. We hear a burst of
sound when there is any discontinuity in pressure. This is reflected
not only on our basilar membrane, but in the Fourier transform, and it
is one type of clipping.

2.3 Complex harmonic motion

Now let us examine more complex waves. In reality, virtually every
sound is a complex wave. We really only encounter simple waves
during hearing tests or in electronic music. In fact, listening to a sine
wave for an extended period of time can cause headaches, extreme
emotional responses, and hearing damage [3].

Figure 2.8: A clip of an audio signal.

The horizontal axis of Figure 2.8 is once again time and the vertical
axis is amplitude or pressure. Clearly, this is complicated: It is close to
impossible for our brains to detect any sort of pattern in this waveform
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because there is no clear repetition.Furthermore, there are no distinct
frequencies we can pick out because there is no obvious repetition in
the sound wave. However, this wave can be decomposed completely
into sine waves solely by a Fourier transform. It may require hundreds,
even an infinite amount of them, but it can be done. Let us look at
a simpler—but still complex—wave to illustrate the combination of
simple sinusoids, as in Figure 2.9. Our ears can identify a pattern

Figure 2.9: The combination of two simple sine waves, x1(t) = sin(2⌅t) and x2(t) =
sin(4⌅t).

because this wave is periodic. This wave is made up of two different
sine waves, and they are harmonic relatives of each other: One is twice
the frequency of the other. This wave repeats identically after every
second. The first sinusoid x1 has a frequency of 1 Hz (2⌥ rad/s), and
the second sinusoid x2 has a frequency of 2 Hz (4⌥ rad/s). These are
called frequency components ↵k, where ↵1 = 2⌥ and ↵2 = 4⌥.

We couldn’t actually hear these frequencies as pitch in reality be-
cause they oscillate too slowly: Our ears only translate frequencies
above about 20 Hz as pitched sound to our brains. While using such a
low frequency is preferable for ease of visualization and computation,
any pair of sine waves whose frequencies have a 2:1 ratio is defined
as having the interval of an octave. Say that the scale of the horizontal
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axis in Figure 2.9 was in milliseconds instead of seconds. Then these
sine waves would have the audible frequencies of 1000 and 2000 Hz.
Visually, we can see that these waves intersect half of the time that they
cross the horizontal axis, and the ratio between these waves’ frequency
(2:1) emphasizes the inversely proportional mathematical relationship
between frequency and time (f = 1/T ).

+

=

Figure 2.10: The combination of one sine wave of frequency f1 with another sine
wave with frequency f2 = 2f1 produces the interval of an octave. Note the periodic
nature of the resultant wave: It repeats itself identically four times, just like the first
wave.
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The graph of the signal given in Figure 2.10 can be determined
from the graphs of these two sine waves, but picking out even a small
handful of simple sinusoids from a complex wave is not a task we want
to leave to our senses. We need more advanced computational tools
to analyze frequencies contained in a signal that looks like a random
string of numbers between �1 and 1. That is what is so very exciting
about the power of the Fourier transform.

The physical law at work here is called the principle of superposition.

The principle of superposition: Every wave can be repre-
sented as a sum of simple sinusoids.

Note that this says nothing about whether this sum has finitely
or infinitely many terms. Square and triangle waves, for example,
have jagged corners that cannot be represented by a finite amount of
sinusoids. The principle of superposition is critical to understanding
the concepts in the remainder of this book.

2.4 Harmony, periodicity, and perfect intervals

When two waves have frequencies that are related to each other by
a small-number integer ratio like 2:1, we say that they are harmonic,
that they have a harmonic relationship, or that they are harmonics of one
another. The above example of f1 = 1 Hz and f2 = 2 Hz, i.e., f2 =

2f1, forms the interval of an octave. Likewise, the octave above any
frequency is double that frequency, so we can calculate the frequency
fk that is k-many octaves (the kth octave) above a given frequency f0

by the equation

fk = 2kf0.

Letting k = 0 returns f0, so the frequency 0 octaves above a given
frequency is the original or fundamental frequency. This is called unison,
or perfect unison. A perfect interval is characterized by a small-number
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ratio between the two frequencies, restricted in Western music to 1:1
(P1, perfect unison), 2:1 (P8, perfect octave), 3:2 (P5, perfect fifth), and
4:3 (P4, perfect fourth) [4].

Perfect unison is trivially the smallest integer ratio. Two frequencies
separated by an octave are in the ratio 2:1, the second smallest integer
ratio. The perfect fifth has a ratio very close to 3:2 in equal temperament,
and it is exactly 3:2 in just intonation and Pythagorean tuning. A perfect
fourth has a 4:3 ratio: It is the inversion of the perfect fifth, sounded
by moving up an octave and down a perfect fifth. In fact, as in the
discussion later of musical temperament and tuning systems, every
note of the 12-tone Pythagorean scale can be attained by moving in
perfect fifths, but these intervals are related to f0 by increasingly larger
integer ratios.

Moreover, the smaller the integer ratio between two frequencies
(and two periods, thereby), the more pleasant or consonant we find
their interval. In the introduction to this chapter, I mentioned the har-
monic overtone series and its relationship to timbre in music: Musical
instruments are constructed to have tones containing integer-related
frequencies. To back up a little bit: When we hear A at 440 Hz on
a piano, we do not just hear the frequency 440 Hz. If this were the
case, it would sound no different from an electronic beep caused by
an oscillator or ideal tuning fork. When we hear A440 from a piano,
we actually hear a whole spectrum of other frequencies resulting from
the resonance of the piano and the nature of the fixed string. Musical,
pitched instruments like the piano, with the exception of percussion
instruments, generate overtone series that are very-nearly harmonic,
regardless of the pitch played. The modes of vibration on circular
membranes have Bessel function ratios.

We define nodes as zero crossings (i.e., where x(t) is zero) of the
horizontal axis by a wave and antinodes as areas of maximal compres-
sion and rarefaction. A node exists on an instrument at a point or
region that stays stationary while the rest of the instrument vibrates.
Nodes and antinodes are used when we consider standing waves which
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occur within all musical instruments and rooms. A standing wave is
produced when a sound wave’s forward velocity is the same as its
backwards velocity, hence it stands still with respect to position. For
example, in a violin, waves move back and forth at the same velocity
along a string fixed at both ends and therefore are only displaced up
and down. Standing waves occur when the wavelengths of a given
frequency are in integer proportion to the dimensions of a string, room,
or column of air. They cause feedback in a recording studio because
they do not die as quickly as waves of other frequencies.

Helmholtz resonance can be witnessed when air is blown across a
small opening of an otherwise closed cavity, like a bottle of water or the
cracked window of a moving car. The frequency produced is inversely
proportional to the volume of this cavity and proportional to the cross
sectional area of the opening, so frequencies of larger cavities like the
interior car are low. The formula to calculate the Helmholtz resonance
↵H is given by

↵H =

)

⇥
A2P0

mV0

where ⇥ is the adiabatic index of specific heats (1.4 for dry air), A
is the area of the opening, P0 is the initial pressure of the air inside
of the cavity, m is the mass of air in the neck of the opening, and
V0 is the initial volume of air inside of the cavity. So, widening the
crack of the car window will increase the angular frequency of the
Helmholtz resonance, and reducing the amount of water in the bottle
(hence increasing V0) will reduce the characteristic Helmholtz resonant
frequency ↵H .

Lightly placing one’s finger at any of the nodes on a fixed string
does noticeable things to its harmonics. Doing so at the halfway point
on a guitar string, for example, causes the odd harmonics to drop out
and the octaves above the fundamental to be very clear. Figure 2.11
depicts the first four modes of vibration of a fixed string and the dots
highlight their nodes.
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Figure 2.11: The first four modes of a fixed string. Because a string is secured at both
ends, it’s overtone series is defined according to its length, and the wavelengths of the
frequencies it contains are restricted to integer divisions of that length, i.e., f :2f :3f ,
and so on. A non-integer ratio would result in an impossible scenario: A string loose
at one end.

By paying extra attention to the tone of musical instruments, the
individual overtones may be realized. If you have access to a piano, try
this experiment. Find a way to depress every key on the piano except
for the second-to-bottom A, using books or a friend’s arms. Do this
slowly so that the keys do not trigger sound. When the piano is silent,
strike the A with considerable force and listen closely. You should
be able to hear at least two octaves and a perfect fifth (an E) higher
than this note. These are the first three overtones of the fundamental
frequency, 55 Hz, shown in the following table.
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Frequency Note name Ratio to 55 Hz Interval
55 Hz A 1:1 Perfect Unison
110 Hz A 2:1 Perfect Octave
165 Hz E 3:1 Perfect Fifth

220 A 4:1 Perfect Octave
275 C, 5:1 Major Third
330 E 6:1 Perfect Fifth
385 G 7:1 Minor Seventh
440 A 8:1 Perfect Octave

The intervals above are in their simplest forms. As you can see, the
interval between E3 at 165 Hz and A1 at 55 Hz spans a perfect octave
and a perfect fifth. Frequencies separates by octaves sound so similar
that we actually call all octaves by the same note name, so in most
cases this relaxed terminology of reducing intervals that span more
than an octave is acceptable.5

This series hypothetically continues forever to include the ratios
9:1, 10:1, and so on. But the first few partials of any instrument have
more energy than higher ones, so those are the ones we predominantly
perceive—even though removing the higher ones would affect the
perceived timbre.

5Particularly in the genre of jazz, the intervals of the ninth, eleventh, and thirteenth
are used with some frequency. However, their sonority is similar to the interval minus
an octave, i.e., a ninth has similar quality to a second, a eleventh to a fourth, and a
thirteenth to a sixth.



Section 2.5 Properties of waves 27

Harmonicity—and furthermore, the Western conceptualization of
consonance—in music is manifested by simple mathematical relation-
ships. We will say more about consonance and dissonance in the fourth
chapter on auditory perception.

2.5 Properties of waves

When waves interact with other waves or with media like walls, water,
and hot air, they exhibit to some degree the properties of reflection,
refraction, interference, and damping. Some of these we observe on
a daily basis, like echoes, but some are quite rare, like cancelation.
Understanding the properties of waves helps avoid unwanted sounds
(noise) and improve the desired message (signals), and all of the prop-
erties are direct consequences of the behavior of amplitude, phase, and
frequency in response to the physical world.

Before we begin to explain these properties, three more features
of wavesuseful to understand are wavelength, amplitude envelopes, and
crests versus troughs. Wavelength ⇧ is the distance in meters that a
wave of frequency f travels away from its source in one period T . We
calculate wavelength ⇧ with the equation

⇧ = vT =
v

f
,

where v is the velocity of sound. In dry, room-temperature (68⌅ Fahren-
heit) air, the speed of sound is about 343 meters per second (m/s), and
a 1000 Hz wave would therefore have a wavelength of

343m/s

1000 s�1
= 0.343m.

Note that frequency (f = 1/T ) can be notated either as hertz or s�1.
An amplitude envelope describes the general shape of the ampli-

tude over time for a given wave. Attack, decay, sustain, and release are
the four general qualities of an amplitude envelope, and they are most
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Figure 2.12: The wavelengths of two pure tones, 1 Hz and 10 Hz, calculated by the
formula ⇥ = v

f . Since hertz are measured in inverted seconds (s�1), this is the same
as multiplying the speed of sound by the duration of one period (0.1 and 1 seconds,
respectively). Notice that ⇥10Hz is one-tenth of the length of ⇥1Hz .

often ordered respectively for acoustic instrument examples. They are
all notated one of three ways: As an instant to refer to the instant at
which they begin (the onset time), as an interval to mean the interval
over which they occur, or as a rate defining the speed at which they
happen. It is easy to understand them graphically, as in Figure 2.13.

However, an amplitude envelope is rarely this simple, and the one
defining the shape of the frequency domain is not described the same
way. Attack time and attack rate are particularly meaningful to the
mathematics of music, especially when attempting to extract features
from music. Attack almost solely defines where onsets exist. Onsets
help us identify the location of beats and important events like the
beginning of choruses or verses in musical signals.

Finally, crests and troughs occur at the antinodes of a wave or fixed
string. These are simply synonyms for maximum and minimum values
in pressure.
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Figure 2.13: A general attack-decay-sustain-release envelope, or ADSR envelope: The
first onset of a note is the attack; the movement from the peak of the attack to the
sustain is the decay; the duration a note is held is shown in the sustain; and the final
decrease is the release, where the note is no longer being played. This envelope also
describes reverberation.

Figure 2.14: The nodes, antinodes, crests, and troughs of a sine wave, shown with
eight different amplitudes. The antinodes are located at the crests and troughs, i.e.,
areas of extreme compression and rarefaction, and the nodes are located at normal
atmospheric pressure. Along a string, the nodes are located where the string does not
move. These positions are according to its length.

The nodes are located where the amplitude is 0. Both ends of the
string are therefore nodes. Antinodes occur in exactly the opposite
places: Where the magnitude (absolute value) of the amplitude is lo-
cally maximal—i.e., the magnitude is greater than both of the leftmost
and rightmost magnitudes. These extreme regions are also called com-



30 Physical sound Chapter 2

pressions (where maximal) and rarefactions (where minimal). Skipping
a jump rope creates one antinode (we only count an antinode once per
extrema), two nodes, one compression, and one rarefaction.

Reflection

The property of reflection can be readily observed when loud sounds
initiate in rooms with hard surfaces. We experience reflection when
sound in a room reverberates or echoes. Bats use the reflection of sound
to aid their night vision using echolocation, calculating their distance to
objects from their own position to a high level of precision by emitting
a chirp and measuring the time that it takes for its reflection to be heard.
[5]. The variables in echolocation are: The speed of sound v equal to
343m/s (also written cv, though the notation c in physics is typically
reserved for the speed of light), the round-trip time that the sound
takes to hit the object and reflect back, and the speed at which the
observer (the bat) is traveling. Since sound travels relatively quickly
to the speed of the bat, this third variable is reasonably negligible
and it is unlikely that the bat is taking note of this at all. So, if the
sound takes 5 seconds to reflect back to the bats ears, the object is
(343m/s) · (5s)/2 = 857.5 meters away. This is divided by 2 because it
took 5 seconds for the round-trip time, so it took 2.5 seconds for the
sound to travel to the object.

The human brain perceives sonic events that begin less than about
one-tenth of a second (0.1 s) apart to be part of the same sound [3]. So,
reflections of sound over short distances are perceived as a single signal
because they happen within 0.1 seconds of one another. Therefore, the
minimum distance that a sound can travel in order for an echo to be
perceived is therefore about (343 m/s)·(0.1 s)/2 = 17.15 meters, again
dividing by 2 because it has to make a round trip. Sounds beginning
greater than 0.2 seconds apart are separated by the brain, and between
0.1 and 0.2 seconds is an interval of confusion or roughness.
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The myth that a duck’s quack does not echo was only recently
debunked by the Acoustics Research Centre at the University of Salford
in 2003 [6]. Their best guess as to why this was ever a myth is that
quacks may be difficult to detect because they do not have a sharp
attack like lightning or handclapping, and furthermore, ducks are
usually in water or the air, not in tunnels where echoes are often
observed.

Reflection can be a useful property of sound when recording in
noisy environments. During sporting events like football and bas-
ketball games, you may observe a few people wearing headphones
on the sidelines holding a large, clear, circular object with a micro-
phone at the center. This is a circular parabola, designed much like
a satellite dish. The microphone is placed at the parabola’s focus, a
point through which all waves that hit the parabola reflect and travel.
At the Exploratorium Museum in San Francisco, there are two large
parabolas about eight feet in diameter. They are installed vertically so
that museum visitors can sit inside them on seats strategically placed
so one’s ears are very close to the focal point. The parabolas face each
other, but are about 50 feet apart, making it seem irrational that soft
sounds could be effectively transmitted over such a distance in the
popular, noisy museum. Surprisingly, speech barely louder than a
whisper can be clearly heard at the other end. The same idea applies
to satellite dishes, but their foci extend far beyond the rim of the dish
to compensate for the great distance to their signals’ sources in outer
space.

Refraction

When sound travels from one region to a region with a different density
or stiffness, refraction and dispersion occur[4]. In waveguide synthesis,
these regions are called scattering junctions. The denser a region, the less
room the closely spaced particles have to move around. Sound waves
can become more excited in stiffer mediums due to improvedelasticity
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[7]. Therefore, sound travels more quickly in stiff, light solids than
in liquids or gases. Measurements taken with a contact mic on the
metal interior of a brass horn, for example, are much richer (more
partials are articulated) than measurements taken from the air outside
of the horn. The type of wood used in the body of a violin influences
how much the violin amplifies its sound, and the propagation of
sound in spruce (a common wood in violins) is twice as fast along
the grain (3000 m/s) as it is across it (1500 m/s) [8]. Refraction is an
especially important property to consider for submariners, architects,
and materials scientists.

The speed of sound depends on the bulk modulus B of a medium
(a number representing its elasticity or stiffness) and the density � of a
medium.

cv =

)
B

�

So, it increases with stiffness, and decreases with density. Listed on
the next page are different speeds of sound inside of various media
[9]. The bulk moduli of woods are given parallel to (along) the grain.
All of these numbers are variable, and the numbers are averaged if a
range was given.
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Medium B (⇤109 N/m2) � (kg/m3) cv
Dry air (20⌅ C) 0.000142 1.21 343 m/s
Water (25⌅ C) 2.15 965 1493 m/s

Salt water (25⌅ C) 2.34 1022 1533 m/s
Ebony 13.8 1200 3391 m/s

White oak 11 770 3780 m/s
Honduras mahogany 10.4 650 4000 m/s

Indian rosewood 12.0 740 4027 m/s
White ash 12.2 750 4033 m/s

Engelmann spruce 9.0 550 4036 m/s
Red maple 11.3 675 4092 m/s

Black cherry 12.2 630 4401 m/s
Steel 200 7820 5057 m/s
Glass 70 2600 5189 m/s

Brazilian rosewood 16.0 830 5217 m/s
Diamond 442 3500 11238 m/s

Table 2.1: The speed of sound cv in common acoustic materials is given by cv =
'

B
⇤

where B is the stiffness and ⇧ is the density.

The bulk modulus B describes the volumetric elasticity (three-
dimensional), while Young’s modulus describes the tensile or linear
elasticity (two-dimensional). For the different types of wood, B is actu-
ally Young’s modulus. Both are ratios of stress to strain, measuring the
resistance of a material to uniform compression. Hence, both the bulk
modulus and Young’s modulus represent the inverse of compressibility.

Reverberation

Reverberation refers to sound reflecting against walls, refracting into
absorbent material, and dissipating in air after its origination. We talk
about reverberation especially in room acoustics, where a recording
studio should ideally have no reverberation, but a cathedral may have
a lot of reverberation. Its graphical representation is different: Once
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again, the horizontal axis is time and the vertical axis is amplitude, but
this is not the signal itself. Instead, Figure 2.15 shows us the amplitude
of events over time.

Figure 2.15: Reverberation is typically generalized as three main events: The source
signal, its early reflections (with thicker vertical lines), and its late reflections (the
thinner vertical segments). The time of the early reflections with respect to the source
sound is how a source will seem near or far from the location of the observer.

The first event is the original sound—the source signal. As the
source sound propagates in the room, it bounces off each of the walls.
The first time it does this and returns to the receiver is depicted in
the early reflections event. In the above graph, there are six early
reflections representing six walls or surfaces, which is typical in a
rectangular room with four walls, a floor, and a ceiling. The later the
reflection, the farther the surface is from the receiver. The weaker the
reflection, the longer the sound has traveled and the higher absorbency
of the surface material. The late reflections event depict the later
bounces off of these surfaces with gradually less energy.

The frequency response of a reverberant space like a room or musical
instrument is calculated by exciting the space with all frequencies in
its range at a constant pressure and transforming this recording with
a Fourier transform to deduce its resonant frequencies, which appear
as peaks in the frequency response. This can be done by exciting the
instrument with a sine sweep (a pure tone that oscillates from low to
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high frequencies) and recording the instrument’s vibration. In room
acoustics, the frequency response is typically calculated by playing a
burst of white noise, because it has equal energy at all frequencies. The
Fourier transform of white noise is perfectly flat, reflecting the equal
power of the frequencies, and the Fourier transform of the recording
of the white noise in a room will have bumps where the room is
resonating or attenuating sound on a frequency basis. This burst of
white noise is also called an impulse, and a space’s reaction to it is called
an impulse response. Impulses can also be taken with other loud, brief,
noisy things like fireworks, balloon pops, and handclapping, though
their frequency response is naturally more variable than that of white
noise.

Figure 2.16: The impulse response of a room is a function of time. The general shape
of the amplitude envelope is decreasing, but there are peaks where the sound is
reflecting off of surfaces in the room. The horizontal axis is in samples, not seconds,
so this impulse response lasts less than half of a second.
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Figure 2.17: The frequency response of the same room as in Figure 2.15. This is a
function of frequency. Rooms typically have resonances in the lower frequency range
because of their larger dimensions compared to musical instruments.

To calculate the frequency response, we simply take the Fourier
transform of the impulse response, depicted in Figure 2.17.

Room acoustics is a constantly expanding field of research in the
scientific study of sound. A standard way of measuring the reverber-
ation of an acoustic space is by calculating the RT60, the time that a
sound (typically wide-band or narrowband noise) takes to decay by
60 decibels in that space. Architectural structures built for a musical
purpose like auditoriums and studios use room acoustics to choose
materials and dimensions that will best amplify or attenuate certain fre-
quencies. The table and graph depicted in Figures 2.18 and 2.19 define
the absorption that some materials have with respect to sound, and
you can see a direct correlation between the hardness of the material
and how much sound it absorbs.
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Figure 2.18: The absorption coefficients of various materials for the frequencies 250
Hz, 500 Hz, and 1000-2000 Hz. This table comes from Alexander Wood’s The Physics
of Music [10].

Much of the results depicted in Figures 2.18 and 2.19 come from
some of the first discoveries concerning room acoustics by Wallace
Clement Sabine (1868-1919) of Harvard University, who found that

T = 0.161
V

AS

where T is the reverberation time, V is the volume of a reverberant
space in cubic meters, A is the average absorption coefficient, and S

is the surface area of the material. A is strictly less than 1 because 100
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Figure 2.19: The absorption curves of various materials over the frequency range
64-4096 Hz [10].

percent absorptive material does not exist, but as a point of reference,
one square meter of 100% absorptive material is called 1 sabin.

Interference

Let us begin with a theorem from mathematics.

Theorem: For any real numbers a, b ⇣ R,

|a+ b| ⌥ |a|+ |b|.

Proof: Let a, b � 0. Then the result |a + b| = |a| + |b| is
immediate. Let a, b ⌥ 0. Likewise, it is clear that |a+ b| =
|a| + |b|. Finally, let a be the opposite parity (sign) of b.
Then |a + b| < |a| + |b|. So, for all values of a, b in R,
|a+ b| ⌥| a|+ |b|.
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Constructive interference is only satisfied by the maximal case, |a+ b| =
|a|+ |b|, and otherwise destructive interference is occurring.

There are two types of interference in sound: Constructive and
destructive. Constructive interference occurs when two waves, call
them x1(t) and x2(t), interact such that

⇧⇧x1(t) + x2(t)
⇧⇧ =

⇧⇧x1(t)
⇧⇧+

⇧⇧x2(t)
⇧⇧.

In words, the magnitude of their sum is equal to the sum of the mag-
nitude of each wave. It can be shown that the sign of the two waves
must be the same.

Destructive interference is the exact opposite of constructive interfer-
ence. Destructive interference is such that

⇧⇧x1(t) + x2(t)
⇧⇧ <

⇧⇧x1(t)
⇧⇧+

⇧⇧x2(t)
⇧⇧.

For this to be true, the signs of the two waves must be opposite, as
given in the above proof. Therefore, when these waves interact, they
have a detrimental effect on the overall pressure of the air through
which they propagate. Constructive or destructive interference can
only occur when the waves intersect at the same location, whether at a
single point or set of points, and at the same instant or same interval
of time.

Cancelation is a result of completely destructive interference, wherein
|x1(t) + x2(t)| = 0. Consider two identical sinusoids, x1(t) = x2(t) =

A sin(2⌥ft+ ⌦). Now imagine that you have two speakers facing each
another, located exactly at an integer multiple of the wavelength of the
sinusoids (⇧ = v/f , remember) apart from one another, both connected
to your CD player in stereo. Let one channel be x1(t) and the other
be x2(t). When you press play, the waves travel from the speaker to
the opposite speaker at the same time. Because they are placed an
integer multiple (4 times) of their wavelengths apart, the crests of one
wave will occur exactly where the troughs of the second wave occur.
These two waves are called completely out of phase from each other:
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Their phases are different by ⌥ radians, or 180⌅. This is the most that
two waves can be out of phase, even though a circle contains 360⌅.
The waves become reflections of each other because they are exact
opposites, flipped about the horizontal axis, and become in phase with
each other when there is no difference (angle) between their respective
phases.

Figure 2.20: Two speakers exhibiting completely destructive interference. The super-
position of their respective sounds waves is shown by the dotted line. Since one wave
is moving to the left and the other to the right at the same speeds, the wave is 0 only
2 times per period (much like a regular sine wave), but it does not travel—it stands.
Hence, the result is a standing wave, which causes acoustic feedback.

So, their superposition is zero everywhere at certain instants—
at their compressions and rarefactions, to be more precise. These
two waves form what is called a standing wave. A standing wave
occurs when two sine waves of equal frequency travel at the same
velocity in opposite directions, so their velocities, v1 and v2, sum to
zero where v1 = �v2 (i.e., the wave does not propagate—it stands). This
happens in musical instruments along a fixed string or in a column of
air. A standing wave is perfectly stationary, but its amplitude changes
periodically at the same frequency of the two waves.

Standing waves cause acoustic feedback because they resonate in
an acoustic space and thus have more sustain, causing a microphone
and speaker to continuously receive and transmit them when record-
ing. Say that a room is 27’ x 25’ x 12’. Then the frequencies with
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wavelengths equal to 27 feet, 25 feet, or 12 feet (41.3 Hz, 44.6 Hz, and
92.9 Hz) will stand in this room, and furthermore, integer multiples of
these frequencies will also cause feedback (though, to a lesser degree)
because their reflections will mirror their propagations. This means
that larger rooms will have very low-frequency resonances and small
corridors (and musical instruments) will have higher frequency res-
onances, because a wavelength of 30 centimeters translates to about
1143 Hz.

Resonators and noise-canceling headphones are effective in dimin-
ishing the power of undesirable frequencies. Resonators tuned to the
undesired frequency will capture and reduce the frequency by creat-
ing a standing wave: The wave carrying the undesired frequency is
attracted to the resonator, and the resonator absorbs and dissipates
the wave by cancelation. Noise-canceling headphones detect noise via
an exterior microphone near the ear. The noise is directed to an elec-
tric circuit that transforms it into an antinoise signal—a signal exactly
out of phase with the detected noise. This antinoise signal is played
through the headphones to cancel the noise.

The inverse square law

All forms of radiation obey the inverse square law, which simply says
that the farther you are away from a source of energy, the less intense
the energy will be. In a uniform medium, a source propagates in all
directions equally, so we model this motion in three dimensions as a
sphere. The intensity I at a radius r from a sound source with original
power P will be I = P

4⌅r2 , because the surface area of a sphere is given
by 4⌥r2.

However, because we measure the intensity of sound with decibels
(dB), which are a logarithmic unit, the inverse square law returns a
different equation for sound waves than the one listed above. Intensity,
as we will explore in more detail in Chapter 3, is proportional to the
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Figure 2.21: Three-dimensional depiction of the inverse-square law

square of sound pressure, P 2. Therefore, source intensity becomes
proportional to I/r2 at a distance of r from it, and the pressure is then
P/r, not P 6. We say "proportional to" in mathematics when a ratio
exists between two quantities, but their relationship is not necessarily
the same in every scenario, i.e., the ratio may fluctuate. The number of
days that it rains in a year, for example, is proportional to the annual

6Note that only intensity and pressure diminish with distance, not frequency or
wavelength. Red does not get any "less red" the farther we are away from it.



Section 2.5 Properties of waves 43

inches of rain accumulated in a year, but x-many days of rain does not
necessarily mean y-many inches of rainfall.

The brain treats the ears like two distinct microphones, not as a
total or average [4]. It relies heavily upon the inverse square law to
detect the proximity of sources, while the distance between the ears
and the physicality of the pinnae (the flaps of skin external to the skull)
provide information about the sources’ directionality. The primary
function of hearing, or of any sensation for that matter, is to alert the
hearer of threat to its survival. The sensation of sound can quickly
activate our adrenal glands, and can thereby serve to inform the proper
fight or flight response. Music, too, has the power to elicit very strong
emotional reactions, including fear and anger.

Another aspect of sound that requires a physical explanation is
our ability to hear sounds from sources outside of the room. In my
office, I can hear footsteps approaching from around the corner and
the elevator bell, even though the elevator is located far down the hall.
But these sounds all seem to be coming from my doorway. This can be
explained by Huygens’ principle, depicted in Figure 2.22.

Huygens’ principle: Every point of a moving wave is also
the center of a new source, each propagating a fresh set of
waves in all directions.

This is also known as diffraction, and explains why the sound from a
loudspeaker can be heard at locations behind it, above it, and to its
left and right. This is true of light as well, but because the wavelength
of light is so short (about 390 to 750 nanometers) due to its very large
frequency (400-790 Terahertz, where 1 Terahertz (THz) = 1012 Hz), it
is not as easily perceived.

The elasticity of air is what allows sound and light to vibrate, so
there is neither light nor sound in a vacuum. Other qualities of air and
the Earth’s atmosphere can have interesting effects on traveling waves.
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Figure 2.22: Sounds originating on the other side of an open doorway will appear to
originate from the doorway itself, states Huygens’ Principle.

The effects of temperature, humidity, velocity, and altitude

Waves move differently depending on the media through which they
travel, as stated in the discussion of refraction. Temperature, humidity,
and altitude are all directly related to atmospheric pressure, which is
itself a result of gravity. Sound waves vibrate easiest in high-pressure
areas where there are fewer forces working against their energy. Since
pressure decreases as elevation increases, sound waves tend toward
the ground. Sound travels slowly and loses energy faster in hotter
temperatures because heat rises. As the hot air moves upwards, it
takes some of the sound waves’ energy with it.

Temperature’s effect on pitch is most noticeable in wind instru-
ments, due to the expansion of their bores from heat.A flute, for
example, rises in pitch about 0.002 Hz for every 1⌅C (1.8⌅F) rise in
temperature. The tuning of piano strings increases about 0.00001 Hz
for each 1⌅C increase in temperature because hotter strings expand.

The velocity of a sound can be calculated as before, in the section
on refraction, but also from the derivative of the pressure of a medium
with respect to its density:

v =

)
⌘p

⌘�
=

)
B

�
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where p is the pressure of a medium � is once again its density. There-
fore, the bulk modulus can be determined by

B = v2� =
⌘p

⌘�
�.

In 0% humidity (dry) air,

v = 331.3

(
1 +

t

273.15

for temperature t in degrees Celsius.
As mentioned in the discussion of refraction, a soundÕs propaga-

tion speed is dependent upon the medium through which the sound
travels. A final way of calculating these speeds is with the Mach number
of a given medium, where the Mach number of dry air is 1. A Mach
number greater than 1 indicates that sound is traveling at a supersonic
speed. We can calculate the Mach number with the equation

M =

,++* 2

⇥ � 1

⇣�
qc
p
+ 1

 ��1
�

� 1

⌘

where M is the Mach number, qc is impact pressure of the medium,
p is the pressure of the medium, and ⇥ is the ratio of the pressure of
the medium to heat—the volume constant. This equation comes from
Bernoulli’s principle in fluid dynamics.

Humidity has a small but detectable effect on sound propagation,
due to the presence of lighter and more elastic water molecules in the
air. As you may guess, the velocity of sound increases in humid air, up
to 0.6%. Since the density of air is lower at higher altitudes than at sea
level or below it, the speed of sound decreases as its altitude increases.

The speed by which sound travels affects the sound’s volume at a
given distance, and unsurprisingly, the faster sound travels, the better
it maintains its original intensity. Wind will additively or subtractively
affect the speed, working as you may suspect: When wind is blowing
in the direction of the sound, it increases its velocity, and thus its
loudness.
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Finally, when an observer or sound source is moving, the Doppler
effect causes the wavelength of sounds to change. As a source moves
closer to an observer, every period of the sound wave gets increas-
ingly shorter, causing the period to get smaller and frequency to get
larger. Conversely, waves moving away from an observer will have
increasingly larger periods, causing frequency to decrease. Austrian
physicist Christian Doppler witnessed and quantified this in 1842 with
the mathematical formula

fo =

�
c+ vo
c+ vs

 
fs,

where fo is the frequency heard by the observer, c is the speed of sound
in the medium (343 m/s in air), vo is the velocity of the observer, vs is
the velocity of the sound’s source, and fs is the frequency of the source.
The observer’s velocity vo will be positive if the observer is moving
towards the source, and vs will be positive if the source is moving away
from the observer.

2.6 Chapter summary

This chapter investigated the four main properties of waves—amplitude,
frequency, period, and phase—and their behavior in an ideal world and
in reality. Also distinguished were the terms signal and noise. These
terms are important for understanding the compression of information,
a topic raised at the end of Chapter 5.

Sound waves can be decomposed into a sum of simple sine waves,
says the principle of superposition. It is easy to realize the amplitude (A),
frequency (f ), period (1/f ), and phase (⌦) of a simple sine wave: It is
of the form A sin(2⌥ft+ ⌦). When two waves are related in frequency
by a small-number integer ratio, we say that the (musical) interval
between them is harmonic. Amplitude explains the amount of pressure
induced by a sound wave in a medium. Sound can only be heard when
the pressure of a medium is varying, as changing pressure signifies
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a disturbance in the eardrum. For example, when we go to places at
high altitudes, there is a lower pressure, but no specific sounds are
associated with this change.

The phase of a wave in relation to the phase of another wave deter-
mines how two or more waves will interfere with each other when they
interact in a medium. When the resultant wave is less in amplitude
than the sum of the amplitudes of the original waves, it is interfering
destructively. Otherwise, it is undergoing constructive interference.
Waves traveling in exactly opposite directions and at identical frequen-
cies create standing waves. For the same reason, standing waves also
happen in musical instruments, on a fixed string, and in columns of
air.

Sound waves reflect off of objects, refract in different media, and
lose energy as they dissipate (the inverse square law). All of this is rever-
beration, which describes the behavior of sound after it originates from
a source like a speaker or musical instrument. Every point through
which a sound wave travels is also the source of a new set of waves,
states Huygens’ principle, but this source is not thought of in the same
way as a speaker or musical instrument.

A hotter environment will increase the frequency of the sound
passing through it. Increasing the humidity and density of a medium
increases the velocity of sound waves. Sounds moving towards an
observer will have increasingly shorter wavelengths and thus higher
frequencies, and the converse is true (the Doppler effect). Finally, sound
waves are attracted to high-pressure areas where their energy will be
most conserved, and since pressure decreases with altitude, all sound
waves tend towards the ground.


